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UPC, edifici C3, C. Jordi Girona, 1, 08034 Barcelona, Catalonia, Spain
2 Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Av. Diagonal,
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Abstract
The aim of this paper is to study symmetries of linearly singular differential
equations, namely, equations that cannot be written in normal form because
the derivatives are multiplied by a singular linear operator. The concept of
geometric symmetry of a linearly singular differential equation is introduced as
a transformation that preserves the geometric data that define the problem. It is
proved that such symmetries are essentially equivalent to dynamic symmetries,
that is, transformations mapping solutions into solutions. Similar results
are given for infinitesimal symmetries. To study the invariance of several
objects under the flows of vector fields, a careful study of infinitesimal
variations is performed, with a special emphasis on infinitesimal vector bundle
automorphisms.

PACS numbers: 02.30.Hq, 02.40.Vh
Mathematics Subject Classification: 34A09, 37C10, 37C80, 70G65, 70H45

1. Introduction

Let M be a manifold, and P the set of paths in M. Consider a subset S ⊂ P , which may be
understood as the set of solutions of a certain problem on the set of paths. This problem—
usually we think of a differential equation—may be stated in terms of several objects, the data
of the problem. The solutions of the problem are the paths in P that satisfy some condition
with respect to the data that identify the problem. Examples of data can be a vector field,
a submanifold, a connection, a potential function, a Lagrangian, etc, and for each case a
specification of the associated problem must be given: let it be the search for the integral
curves of a vector field, the critical paths of an action functional, etc.
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Since the problem is identified by the data and solved by the solutions, there appear
naturally two different concepts of what a symmetry of the problem is, differing as to whether
the emphasis is put on the side of the data or on the side of the solutions. In a certain sense, a
transformation that preserves the data is a symmetry of the problem; and so it is, but in another
sense, a transformation that maps solutions into solutions. In order to avoid confusion, we
can call geometric the former symmetries, and dynamic the latter. In fact, the word dynamic
is reminiscent of the equations of motion that set the dynamics of a physical problem. Also,
in most cases, the data of the problem will have geometric significance, and hence the name
suggested. Usually a geometric symmetry of a problem will also be a dynamic symmetry;
thus the search for geometric symmetries will be a relevant part of a wider subject: the search
for dynamic symmetries. Noether transformations of an action functional are an example of
this.

As for the type of transformations of the paths, we will confine ourselves to point
transformations (of the dependent variable), which arise as γ �→ ϕ∗[γ ] := ϕ ◦ γ , for a
certain diffeomorphism ϕ:M → M . (Among non-point transformations we have for instance
reparametrizations of the independent variable, and the generalized transformations, where
the transformation involves also the derivatives of the path—see [Olv93].)

In this paper we will deal with problems resulting in first-order autonomous differential
equations on M. Among the possible data that identify the problem, there is the differential
equation itself, considered as an implicit relation involving a path x(t) and its derivative with
respect to the evolution parameter:

F(x, ẋ) = 0.

Equations of this form are often called differential-algebraic, or implicit differential equations.
Of course, if one can isolate the derivative,

ẋ = f (x)

the equation is said to be in normal form, and giving an initial condition (t0, x(t0)) determines
uniquely the solution x(t). However, we are mainly interested in the singular case.

More precisely, we are interested in implicit differential equations of the form

A(x)ẋ = b(x)

where the velocities cannot be isolated because of an everywhere singular linear operatorA(x)
multiplying them. Such equations may be called linearly singular differential equations. This
general class of implicit differential equations was geometrically presented in [GP91, GP92].
In these papers it is pointed out that many interesting systems of mathematical physics and
applied mathematics are linearly singular.

In more detail, this framework describes the equations of motion of the presymplectic
dynamical systems [GNH78] (including their applications to Lagrangian and Hamiltonian
mechanics [Dir64, GN79, MT78, Ski83, SR83]), the first-order Lagrangian formalism [GP92],
the higher order Lagrangian dynamics [GPR91, LR85] (including also their ‘higher order
differential equation’ conditions [GPR92]), and systems with non-holonomic constraints
[GM02].

In addition to these applications of interest for mathematical physics, one can find
applications of implicit and linearly singular differential equations to electrical and chemical
engineering, control theory, economics, etc (see for more details, examples and references in
[GP92, GMR96, HLR89, Rhe84]). As well as all the mentioned papers, there are also many
papers and books studying geometric features [CO88, HB84, MMT92, MMT95, MR99]
[MT78, Rei90, Rei91, RR94, Tak76] and numerical methods [Cam80, HLR89, HW91] for
implicit equations.
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The symmetries of an implicit differential equation can be studied using general techniques
[Olv93]. Important topics such as Lagrangian systems and presymplectic systems have been
widely studied (see for instance [Olv93, LM96] and references therein). Besides these cases,
there are few references on symmetries of implicit differential equations: we could point
out the paper [MMT92], where symmetries and constants of motion for implicit systems
F(x, ẋ) = 0 are studied; [CO88], which contains a study of normal forms of linearly singular
systems given by a vector bundle morphism A: TM → TM; [MR99], which deals with
symmetries of linearly singular systems given by a vector bundle morphism A: TM → T∗M;
and the recent study [BS01] of symmetries and reduction of Dirac structures.

The main purpose of this paper is to study the symmetries of a linearly singular differential
equation. For such an equation we can consider the geometric symmetries preserving the data
(A, b) that define the equation. It will be proved that any dynamic symmetry of the differential
equation may be locally realized as a geometric symmetry of the data. A similar result will
also be given for infinitesimal symmetries.

The paper is organized as follows. Section 2 presents the geometric framework of linearly
singular differential equations,and gives several basic results. Section 3 studies the symmetries
of such a system, and relates them to the symmetries of the associated implicit differential
equation. In section 4 the concept of infinitesimal symmetry is presented, and a study similar
to that of section 3 is performed. Section 5 particularizes all the results to regular and to
consistent systems. Section 6 is devoted to an example, and section 7 to conclusions. Finally,
there is an appendix dealing with calculus of infinitesimal variations, and more particularly
with the invariance of maps under the action of flows of vector fields, and with infinitesimal
symmetries of vector bundles.

The tools used in this paper are those of differential geometry, in particular manifolds
and submanifolds, vector fields and their flows, and vector bundles and their morphisms
[AMR83, Die70, KMS93]. Throughout the paper the manifolds are finite-dimensional and
paracompact, and the maps are smooth; ‘differential equation’ means ‘first-order autonomous
ordinary differential equation’.

2. Linearly singular differential equations

In this section we recall some of the main results from [GP91, GP92], and we give additional
results to be used later on.

2.1. The geometric framework

Definition. An implicit system on a manifold M is a submanifold D ⊂ TM . It defines an
implicit differential equation, for which a path ξ : I → M is a solution when its lift to the
tangent bundle, ξ̇ , is contained in D:

ξ̇ (I ) ⊂ D. (2.1)

When D is the image of a vector field X on M,D = X(M), one has an explicit differential
equation, or says that the equation can be put in normal form. Then a path ξ is a solution of
D iff ξ̇ = X ◦ ξ .

Definition ([GP91, GP92]). A linearly singular system is a quintuple (M,F, π,A, b) given
by a manifold M, a vector bundle π :F → M , a vector bundle morphism A: TM → F , and
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a section b:M → F . These data define a linearly singular differential equation, for which a
solution is a path ξ : I → M such that

A ◦ ξ̇ = b ◦ ξ. (2.2)

The associated implicit system is the subset

D = A−1(b(M)) = {v ∈ TM | A · v ∈ b(M)} ⊂ TM. (2.3)

We will use the notation (A: TM → F, b) to refer to a linearly singular system. The
following diagram shows all these data:

I M

TM

�ξ
�

�
�

�
��

ξ̇

�

τM

F

�
�

�
�

��

π

�
�

�
�
��

b

�A

Proposition 1. The differential equations defined by a linearly singular system (A: TM →
F, b) and its associated implicit system D have the same solutions.

Proof. Equation (2.1) means that, for each t, ξ̇ (t) ∈ D. This is equivalent to A · ξ̇ (t) ∈ b(M),
and being A fibre-preserving this is equivalent to A · ξ̇ (t) = b(ξ(t)). �

Note that in general (2.2) may not have solutions passing through every point in M, and
if there is a solution passing through a point x at a given time it may not be unique. We call
the motion set the set S ⊂ M of points by which a solution passes.

It is useful to try to describe the solutions of the equation of motion (2.2) as integral curves
of vector fields. More precisely, if M ′ ⊂ M is a submanifold and X is a vector field on M
tangent to M ′, then the integral curves of X contained in M ′ are solutions of the equation of
motion (2.2) if and only if X satisfies

A ◦X �
M ′
b (2.4)

where the notation �
M ′

means equality at the points ofM ′. Let us remark that this is an equation

both for X and M ′, since in general there will not be a vector field satisfying this equation all
over M.

2.2. The constraint algorithm

Consider a linearly singular system (A: TM → F, b). To solve the corresponding differential
equation a consistency algorithm may be performed. This algorithm is indeed a generalization
of the presymplectic constraint algorithm [GNH78], which is a geometrization of Dirac’s
theory for singular Lagrangians [Dir64]. Let us describe this algorithm briefly.

Definition. The primary constraint subset is the set M1 ⊂ M of points x where the linear
equation Ax · ux = b(x) is consistent:

M1 = {x ∈ M | b(x) ∈ ImAx}. (2.5)

The functions of M vanishing on M1 constitute the ideal of primary constraints.
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The reason for the terminology is clear: in view of the differential equation of motion
(2.2), if ξ is a (smooth) solution of it, then necessarily ξ lives inM1. As for the constraints, in
this paper we are not especially interested in explicit procedures to compute them; see [GP92]
for more details.

To proceed further it is convenient to require some regularity conditions on A and M1:

Definition. We will refer to the regularity assumption as the following conditions to be satisfied
by a linearly singular system (A: TM → F, b):

1. The morphism A has constant rank—thus KerA ⊂ TM and Im A ⊂ F are vector
subbundles,D ⊂ TM is a closed submanifold andM1 is a closed subset.

2. The primary constraint subset M1 ⊂ M is a non-empty submanifold.

Let us assume that our linearly singular system satisfies the regularity assumption, and let
ξ be a solution of the corresponding differential equation. It is clear that ξ is also a solution of
the linearly singular differential equation defined by restricting all the problem toM1, namely,
the subsystem (A1: TM1 → F1, b1), where F1 = F |M1

, and A1 and b1 are the corresponding
restrictions to M1.

Note that the problem is not yet solved: for a point x ∈ M1, b(x) does not necessarily
belong to the image of the restriction of Ax to the subspace TxM1 ⊂ TxM . Repeating the
consistency analysis for the subsystem yields a subsetM2 := (M1)1 ⊂ M1.

Let us assume that the regularity assumption holds for the successive subsystems. The
repetition of the consistency analysis on the subsystems yields an algorithm that reaches—in
a finite number of steps since M is finite-dimensional—a final constraint submanifold
Mf := ⋂

i�0 Mi. The solutions of the original problem are the solutions of the equation
of motion of the linearly singular system (Af : TMf → Ff, bf) defined by restriction to Mf .
By construction, bf has its image in ImAf—otherwise the algorithm would not be finished.
Therefore the equation

Af ◦ Xf = bf (2.6)

for a vector field Xf in Mf has solutions. Since Mf is closed these solutions can be extended
throughout M to yield solutions X of the equation of motion (2.4) along M ′ = Mf which are
tangent to this submanifold. Given a particular solution Xf of (2.6), the set of solutions is
Xf + KerAf . Therefore there is a unique solution (on Mf) iff Af is injective.

Mf

�
Xf

TMf

�

ImAf

�
�

�
�
��

bf

�Af
Ff

�

So note that the final dynamics is simply that of a linearly singular system where the morphism
A is surjective.

Note finally that if the Mi fail to be submanifolds, then in order to apply the constraint
algorithm some points of the base space M may have to be removed; in this case only a subset
Mf ⊂ S of the motion set will be obtained, and the motion set S may not be a submanifold. It
may also happen that the final constraint submanifold is empty. See some examples in [GP92].
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2.3. Morphisms of linearly singular systems

Definition. A morphism of linearly singular systems between (A: TM → F, b) and
(A′: TM ′ → F ′, b′) is a morphism (ϕ,�) between the vector bundles F → M and F ′ → M ′

(so it satisfies ϕ ◦ π = π ′ ◦�) such that

� ◦ b = b′ ◦ ϕ (2.7a)

� ◦ A = A′ ◦ Tϕ. (2.7b)

Let us show all this in a diagram:

M

TM

�

F

�
�

�
�

��

π

�
�

�
�
��

b

�
A

M ′

TM ′

�

F ′

�
�

�
�

��

π ′

�
�

�
�
��

b′

�A′

���������
ϕ

���������Tϕ

���������

�

With this definition the linearly singular systems constitute a category. Its isomorphisms
correspond to the case when (ϕ,�) is an isomorphism of vector bundles. In this case, in
general we can define

�∗[A] := � ◦ A ◦ (Tϕ)−1 �∗[b] := � ◦ b ◦ ϕ−1 (2.8)

where�∗ denotes the push-forward through the isomorphism (ϕ,�); then the condition to be
an isomorphism of linearly singular systems is �∗[A] = A′, �∗[b] = b′.

Note also the following trivial remark: if �:F → F is a base-preserving automorphism,
it defines an isomorphism between (A: TM → F, b) and (� ◦ A: TM → F,� ◦ b). This
reflects the fact that the equations A ◦ ξ̇ = b ◦ ξ and (� ◦ A) ◦ ξ̇ = (� ◦ b) ◦ ξ are completely
equivalent.

It is easily proved that a morphism applies solutions of the corresponding differential
equation into solutions. Other constructions with linearly singular systems can be carried
out: subsystems, quotients, products, . . . . These constructions induce natural morphisms. See
[GP92] for more details.

2.4. Primary dynamical vector fields

Let us have a closer look at the first stage of the constraint algorithm.

Proposition 2. Consider a linearly singular system (A: TM → F, b). Then:

1. M1 = τM(D), where τM : TM → M is the natural projection.
2. If the regularity assumption is satisfied, D ⊂ TM|M1

→ M1 is an affine subbundle
modelled on (KerA)|M1

.

Proof. For the first assertion, x ∈ M1 iff there exists vx ∈ TxM such thatA ·vx = b(x), which
is equivalent to saying that vx ∈ Dx—we write as usual Dx = D ∩ TxM .

Now consider the restriction of A to the submanifold M1, A1: TM|M1
→ F |M1

. Since
the section b1 = b|M1

is in the image of A1 and A1 is a vector bundle morphism with
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constant rank, we have thatD = A−1
1 (b1(M1)) is an affine subbundle of TM|M1

modelled on
KerA1 = (KerA)|M1

. �

Definition. A section of D → M1 is called a primary dynamical vector field.

Of course we can suppose that such a section is extended to a vector field X on M. Then,
saying that X is a primary vector field means that

A ◦X �
M1

b. (2.9)

Such vector fields constitute a first approach to the final dynamics (the tangency of X toM1 is
not guaranteed).

If X0 is a primary dynamical vector field, another vector field X is a primary field if and
only if it differs fromX0 on a section of KerA onM1. Thus, if (�µ)1�µ�m is a local frame for
KerA near M1, then there locally exist functions gµ, uniquely determined on M1, such that,
locally,

X �
M1

X0 +
∑
µ

gµ�µ. (2.10)

See [GP92] for more details on how an explicit computation of the final dynamics can be
obtained in this way.

3. Symmetries of linearly singular systems

We have pointed out in the introduction that one may define several concepts of symmetry of
a differential equation according to the data that define it. Our purpose now is to study the
natural symmetries of linearly singular systems.

Definition. A symmetry of an implicit system D ⊂ TM is a diffeomorphism ϕ:M → M

leaving D invariant, that is,

(Tϕ)(D) ⊂ D. (3.1)

Proposition 3. A symmetry ϕ of D maps solutions of the corresponding differential equation
into solutions.

Proof. It is immediate: if ξ is a solution (that is, ξ̇ (t) ∈ D) then ϕ ◦ ξ is also, since
(ϕ ◦ ξ) · (t) = (Tϕ) · ξ(t) ∈ D. �

Though this is the natural geometric definition of a symmetry of D, this is not a necessary
condition for ϕ to define a symmetry of the solutions of the differential equation, because
an implicit differential equation may not have solutions passing through every point in D.
But with a convenient refinement of it, this condition essentially characterizes the symmetries
of the solutions of the differential equation. More precisely, following the terminology of
[Olv93], let us call D locally solvable if for each v ∈ D there is a solution ξ of the implicit
differential equation such that ξ̇ (0) = v (see also [MMT92]).

Proposition 4. Suppose that D is locally solvable. Then a diffeomorphism ϕ:M → M is
a (geometric) symmetry of D iff it is a (dynamic) symmetry of the corresponding differential
equation.

Proof. The direct implication is the preceding proposition. For the converse, let v ∈ D.
For a certain solution ξ , ξ̇ (0) = v, and since ϕ ◦ ξ is also a solution, (Tϕ) · v =
(ϕ ◦ ξ)·(0) ∈ D. �
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When D is not locally solvable, if one can perform a ‘constraint algorithm’ to pass to a
locally solvable D′ ⊂ D, then the dynamic symmetries of D (or D′) are in correspondence
with the geometric symmetries of D′.

Definition. A symmetry of a linearly singular system (A: TM → F, b) is an isomorphism
with itself, that is, a vector bundle automorphism (ϕ,�) of π :F → M such that

b = �∗[b] A = �∗[A].
We have already said that such a transformation maps solutions into solutions. A more

precise result is:

Proposition 5. Let ϕ be the base map of a symmetry (ϕ,�) of a linearly singular system.
Then ϕ is a symmetry of the associated implicit system D.

Proof. We have to show that D is ϕ-invariant. Let vx ∈ D: Ax · vx = b(x). Then, according
to (2.7),

Aϕ(x) · (Tx(ϕ) · vx) = �x · (Ax · vx) = �x · b(x) = b(ϕ(x))

which shows that Tx(ϕ) · vx ∈ D. �
We want to prove a kind of converse of this statement. To this end, first we state an

auxiliary result:

Proposition 6. Let A:E → F be a vector B-bundle morphism, and A′:E′ → F ′ a vector
B ′-bundle morphism. Let S:E → E′ be a vector bundle isomorphism over a map ϕ:B → B ′,
and such that S · KerA ⊂ KerA′. Suppose that A and A′ have the same constant rank, and
that F and F ′ have the same rank.

Then locally there exists a vector bundle isomorphism T :F → F ′ such thatA′ ◦S = T ◦A.

So this proposition deals with the commutativity of the ‘upper square’ of the following
diagram by means of a certain morphism T:

B

E

�

F

�
�

�
�

��

�
A

B ′

E′

�

F ′

�
�

�
�

��

�A′

���������
ϕ

���������
S

��
��

��
���

T

Proof. Since S:E → E′ is an isomorphism, the hypotheses on the kernels and on the
ranks imply that S(KerA) = KerA′, and therefore S defines an isomorphism S̄:E/KerA →
E′/KerA′. Using the canonical isomorphisms E/KerA ∼= ImA, S̄ defines an isomorphism
T0: ImA → ImA′.

Since any vector subbundle is a direct factor, we can put F = ImA ⊕ F1 and
F ′ = ImA′ ⊕ F ′

1. Any vector bundle map T1:F1 → F ′
1 can be combined with T0 to

obtain a vector bundle morphism T such that T ◦ A = A′ ◦ S. The condition on the ranks
locally allows us to choose T1 to be an isomorphism, and therefore T. �

Note however that F1 and F ′
1 in the proof need not be isomorphic, even if F and F ′ are

so. Therefore the last assertion in the proposition is necessarily local. The proof also shows
that T is uniquely defined only on ImA.
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Now we are ready for the main result:

Theorem 1. Let (A: TM → F, b) be a linearly singular system satisfying the regularity
assumption, and let D = A−1(b(M)) be the associated implicit system.

Let ϕ:M → M be a diffeomorphism. The following statements are equivalent:

1. ϕ is a symmetry of the implicit system D ⊂ TM .
2. The restriction of Tϕ(KerA) to M1 is in KerA and, for any primary vector field X, the

restriction of ϕ∗[X] − X to M1 is in KerA.
3. ϕ is locally the base map of a symmetry of the linearly singular system.

Proof. Condition (1) means that

Tx(ϕ) ·Dx = Dϕ(x) (3.2)

for each x ∈ M1. Thanks to the affine structure ofD → M1 (proposition 2),

D|M1
= X|M1

+ KerA|M1

where X is a primary dynamical vector field on M. At x we have

Dx = X(x) + KerAx.

So by condition (1) we have

Tx(ϕ) · KerAx = KerAϕ(x) (3.3a)

Tx(ϕ) ·X(x)−X(ϕ(x)) ∈ KerAϕ(x) (3.3b)

thus obtaining condition (2), and conversely.
Now let us apply proposition 6 to the following diagram:

M1

TM|M1

�

F |M1

�
�

�
�

��

�
A|M1

M1

TM|M1

�

F |M1

�
�

�
�

��

�A|M1

���������

ϕ|M1

���������Tϕ|M1

��
��

��
���

�|M1

We conclude the local existence of a vector bundle isomorphism �|M1
over ϕ|M1

:M1 → M1

closing the ‘upper square’ in the diagram. We extend �|M1
locally to a vector bundle morphism

�:F → F , which we can assure to be an isomorphism at least on an open neighbourhood of
M1 ⊂ M . We have

�x ◦Ax = Aϕ(x) ◦ Tx(ϕ) (3.4a)

which means that �∗[A] = A. Moreover,

�x · b(x) = �x ·Ax ·X(x) = Aϕ(x) · Tx(ϕ) ·X(x) = Aϕ(x) ·X(ϕ(x)) = b(ϕ(x))

so we have

�x · b(x) = b(ϕ(x)) (3.4b)

which means that �∗[b] = b.
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Conversely, from�∗[A] = A we have the first of equations (3.3), and, from �∗[b] = b,

Aϕ(x) · (Tx(ϕ) ·X(x)−X(ϕ(x)))

= �x ·Ax ·X(x)− Aϕ(x) ·X(ϕ(x)) = �x · bx − bϕ(x) = 0

therefore we have the second of equations (3.3). �

A final remark: as before,� is uniquely defined on ImA|M1 .

4. Infinitesimal symmetries

The infinitesimal version of an automorphism of a differential manifold is a vector field X, in
the sense that integration of it yields a local 1-parameter group of diffeomorphisms, the flow
FX. We can translate the results of the preceding section into the infinitesimal language. The
basic geometric tools are gathered in the appendix.

Definition. An infinitesimal symmetry of an implicit system D ⊂ TM is a vector field V on
M such that the maps FεV are locally symmetries of D.

Proposition 7. V is an infinitesimal symmetry of D iff its canonical lift to TM , V T, is tangent
to D.

Proof. It follows from the definition of infinitesimal symmetry and from the definition of the
vector field V T, whose flow is constituted by the maps T

(
FεV

)
. �

Definition. An infinitesimal symmetry of a linearly singular system (A: TM → F, b) is
an infinitesimal automorphism (V ,W) of the vector bundle π :F → M such that its flow(
FεV ,FεW

)
is constituted by local symmetries of the linearly singular system.

According to proposition 14 in the appendix, (V ,W) being an infinitesimal automorphism
of vector bundles means that V is a vector field on M,W is a vector field on F, andW projects
to V and is a linear vector field.

Theorem 2. An infinitesimal vector bundle automorphism (V ,W) is an infinitesimal symmetry
of the system iff

Tb ◦ V = W ◦ b (4.1)

TA ◦ V T = W ◦ A. (4.2)

Proof. The conditions (2.7) for the couple of flows
(
FεV ,FεW

)
to be a symmetry may be written

as

b = F−ε
W ◦ b ◦ FεV A = F−ε

W ◦A ◦ TFεV .

According to proposition 12 in the appendix, these equalities hold for each ε iff (4.1) and (4.2)
also do. �

Now we can state the infinitesimal version of theorem 1:

Theorem 3. Let (A: TM → F, b) be a linearly singular system satisfying the regularity
assumption, and let D = A−1(b(M)) be the associated implicit system.

A vector field V on M is an infinitesimal symmetry of D iff, locally, there exists a vector
fieldW on F such that (V ,W) is an infinitesimal symmetry of the linearly singular system.
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Proof. Consider local coordinates (xi) on M, (xi, ui) on TM and (xi, vk) on F. Then the
section b reads (xi) �→ (xi, bk(x)), and the morphism A reads (xi, ui) �→ (

xi, Aki (x)u
i
)
. Let

us write

V = ai
∂

∂xi

so that V T = ai ∂
∂xi

+ ∂ai

∂xj
uj ∂

∂ui
. The subset D ⊂ TM is locally defined by the vanishing of

the constraints ψk(x, u) := Aki (x)u
i − bk(x). In this way, the tangency of V T to D is locally

expressed as

V T · ψk = Bkl ψ
l

for some functionsBkl ; in principle, these functions depend on (xi, ui), and may not be unique.
However, the derivative of an affine function with respect to a linear vector field is again an
affine function, so the functions Bkl can be assumed not to depend on ui . Writing more
explicitly the preceding equality we obtain

Akj
∂aj

∂xi
ui +

∂Aki

∂xj
ajui − ∂bk

∂xi
ai = Bkl A

l
iu
i − Bkl b

l.

Equating the constant and the linear parts, we conclude that V is an infinitesimal symmetry of
D iff there are functions Bkl (x) such that

∂f k

∂xi
ai = Bkl f

l Akj
∂aj

∂xi
+
∂Aki

∂xj
aj = Bkl A

l
i . (4.3)

On the other hand, a linear vector field W on F projecting to V is expressed as

W = ai
∂

∂xi
+ Bkl (x)v

l ∂

∂vk

for some other functions Bkl . Then, according to theorem 2, the conditions of (V ,W) being
an infinitesimal symmetry of (A: TM → F, b) read as follows: Tb ◦ V = W ◦ b means

∂bk

∂xi
ai = Bkl b

l

and TA ◦ V T = W ◦A means(
∂Aki

∂xj
aj +Akj

∂aj

∂xi

)
ui = Bkl A

l
i .

Comparing these conditions with (4.3), we conclude that V being an infinitesimal symmetry
of D is equivalent to the existence of W making (V ,W) an infinitesimal symmetry of
(A: TM → F, b). �

5. Regular systems and consistent systems

5.1. Regular systems

Definition. A linearly singular system (A: TM → F, b) is regular if A is a vector bundle
isomorphism.

In this case the dynamics is uniquely determined by the associated explicit system given
by the vector field X = A−1 ◦ b.

Note that, for a diffeomorphism ϕ:M → M , now it is equivalent to say that D = X(M)

is invariant by Tϕ, and that X is invariant by ϕ.
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If (ϕ,�) is a symmetry of the linearly singular system, then � is uniquely determined
from ϕ as

� = A ◦ Tϕ ◦ A−1. (5.1)

Then the relations� ◦ b = b ◦ ϕ and Tϕ ◦X = X ◦ ϕ are readily seen to be equivalent. So we
have proved the following result:

Proposition 8. Suppose that the system (A: TM → F, b) is regular, and let ϕ:M → M be a
diffeomorphism. Then the following statements are equivalent:

1. ϕ is a symmetry of the associated implicit system D.
2. ϕ leaves the dynamical vector field X invariant.
3. ϕ is the base map of a symmetry (ϕ,�) of the linearly singular system (A: TM → F, b)—

then � is uniquely determined by equation (5.1).

As for the infinitesimal symmetries, we have a similar situation: equation (4.2) determines
W = A∗[V T], and then equation (4.1) says TX ◦ V = V T ◦ X, which means [V,X] = 0. So
we have:

Proposition 9. Suppose that the system (A: TM → F, b) is regular, and let V be a vector
field in M. Then the following statements are equivalent:

1. V is an infinitesimal symmetry of the associated implicit system D.
2. V leaves the dynamical vector field X invariant ([V,X] = 0).
3. There exists an infinitesimal symmetry (V ,W) of the linearly singular system (A: TM →
F, b)—thenW is uniquely determined as W = A∗[V T].

An important case of a regular system is that of a Hamiltonian system (M,ω,H), where
ω is a symplectic form on a manifold M and H is a Hamiltonian function. This defines a
linearly singular system (ω̂: TM → T∗M, dH), whose dynamics is ruled by the Hamiltonian
vector field XH . A diffeomorphism ϕ preserving XH is not in general a symmetry of the
Hamiltonian system, since it may not be a canonical transformation (symplectomorphism).
However, we have shown that it defines a symmetry of the system if considered as a linearly
singular system.

5.2. Consistent systems

Definition. A linearly singular system (A: TM → F, b) is consistent if A is a surjective vector
bundle morphism.

The solutions of the corresponding differential equation are the integral curves of the
primary vector fields, that is, the sections of the affine bundleD → M; they can be expressed
as X0 + �, where X0 is a particular primary vector field and � belongs to KerA. So, the
invariance of D can be stated in terms of X0 and KerA:

Proposition 10. Let (A: TM → F, b) be a consistent linearly singular system, and let D be
the associated implicit system.

1. A diffeomorphism ϕ:M → M is a symmetry of D iff KerA is invariant by ϕ and, for any
primary vector field X0, ϕ∗[X0] −X0 is in KerA.

2. A vector field V in M is an infinitesimal symmetry of D iff, for any vector field � in KerA,
[V,�] is in KerA, and, for any primary vector field X0, [V,X0] is in KerA.
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Proof. The first statement follows from the equivalence between assertions 1 and 2 in
theorem 1. The second statement is the infinitesimal version of the first one. �

Note that a consistent system is locally solvable, so the preceding conditions characterize
the dynamic symmetries of the linearly singular differential equation.

Let us remark that the definition of a consistent system could be slightly more general. If
the consistency condition for the linear equation Ax · ux = b(x) holds at every x ∈ M (i.e.
M1 = M), then the image of b is contained in ImA ⊂ F . If this is a subbundle, we could
safely substitute ImA for F in the linearly singular system, thus obtaining what we have called
a consistent system. A similar remark can be applied to regular systems.

5.3. Symmetries at the end of the constraint algorithm

Consider a linearly singular system (A: TM → F, b). If the constraint algorithm as explained
in section 2 can be performed on it (in the sense that the regularity assumption is satisfied at
each step of the algorithm), then the final dynamics is that of a consistent linearly singular
system (Af : TMf → ImAf, bf), so the preceding proposition may be directly applied to it.

6. An example: the associated presymplectic system

In some problems of control theory, equations of the typeA(x)ẋ = b(x, u), where u represents
the control, play a relevant role. Ibort noted—see [DI00]—that, from a linearly singular system
(A: TM → F, b), one can define a presymplectic system (F ∗, ω,H) on the total space of the
dual vector bundle π∗:F ∗ → M . This is as follows.

If θM is the canonical 1-form and ωM = −dθM is the canonical symplectic form of T∗M ,
one can use the transpose map tA:F ∗ → T∗M of A to define forms on F ∗ by pull-back:

θ = tA
∗[θM ] ω = tA

∗[ωM ]. (6.1)

In a similar way one can use the section b:M → F to define a linear function H :F ∗ → R:

H(αx) = 〈αx, b(x)〉. (6.2)

One can study the relations between both systems. For instance, each solution of the
linearly singular equation is in correspondence with a family of solutions of the equation of
motion of the presymplectic system. We shall limit ourselves to study the relation between
the symmetries of both systems.

Consider a vector bundle automorphism (ϕ,�) of π :F → M . The contragradient map
�∨ = t�−1 is a vector bundle automorphism of F ∗, with base map ϕ.

In analogy with (2.8), �∨ transforms the 1-form θ and the Hamiltonian function:

�∨
∗ [θ ] = (T�∨)∨ ◦ θ ◦ (�∨)−1 �∨

∗ [H ] = H ◦ (�∨)−1.

Note that H = 〈Id, b ◦ π∗〉. A computation shows that

�∨
∗ [H ] = 〈Id,�∗[b] ◦ π∗〉 (6.3)

which proves that if b is �-invariant then H is �∨-invariant; the converse is also true, since b
is determined by H.

In a similar way, consider for the sake of simplicity the 1-form θ as a linear function
θ : TF ∗ → R—we use the same letter θ so as not to overload the notations. Then note that
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θ = 〈τF ∗ , A ◦ Tπ∗〉. Another computation shows that

�∨
∗ [θ ] = 〈τF ∗ ,�∨

∗ [A] ◦ Tπ∗〉. (6.4)

As before, this proves that A is �-invariant iff θ is �∨-invariant.
As a conclusion, we have:

Proposition 11. Consider a linearly singular system (A: TM → F, b), and the associated
presymplectic system (F ∗,−dθ,H). Let (ϕ,�) be a vector bundle automorphism ofF → M .
Then:

1. b is �-invariant iff H is �∨-invariant.
2. A is �-invariant iff θ is �∨-invariant.

So if (ϕ,�) is a symmetry of the linearly singular system then �∨ is a symmetry of the
presymplectic system.

7. Conclusions

In this paper we have studied the symmetries of linearly singular differential equations. To
do this, we have intended to clarify what a ‘symmetry’ is for a differential equation, and we
have found that there are several legitimate approaches to this concept. Some approaches
rely on the geometry of the data defining the differential equation (‘geometric symmetries’),
whereas others simply characterize the symmetry as a transformation that maps solutions into
solutions (‘dynamic symmetries’). As for the type of symmetries, we have considered only
point symmetries, which are those defined by diffeomorphisms of the configuration space (or
vector fields, in the infinitesimal case).

After a general introduction to linearly singular differential equations, we deal with two
different concepts of geometric symmetry. The first one, the symmetry of an implicit system,
has a general applicability and relies on the invariance of the subset D ⊂ TM that defines,
implicitly, the differential equation. The second one, the symmetry of a linearly singular
system, is specific to the systems discussed in this paper. For them, we show that both concepts
of symmetry are essentially equivalent. We prove it for a general, finite, transformation, and
also for the case of flows generated by infinitesimal transformations.

Under appropriate regularity assumptions, the concept of dynamic symmetry of the
implicit differential equation defined by D ⊂ TM is equivalent to the concept of geometric
symmetry of an appropriate locally solvable system D′ ⊂ TM ′; this also holds for the
linearly singular case, by means of the constraint algorithm. We show that, under appropriate
regularity assumptions, the most general dynamic symmetry for a linearly singular equation
(on a manifold M) can be locally realized as a geometric symmetry of a linearly singular
system (on the final constraint manifoldMf).

As for the tools needed to deal with the infinitesimal symmetries, in the appendix we have
performed a careful study of infinitesimal transformations and the invariance of geometric
structures under the action of flows. This has been applied to infinitesimal automorphisms of
vector bundles, and may be useful to deal with other problems about infinitesimal invariance.
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Appendix. Calculus with infinitesimal variations

A.1. General aspects

To deal with infinitesimal symmetries it will be convenient to perform a more general study.
Let us consider a map f : R ×M → N . We will use the notation fε(x) = f (ε, x), and we can
interpret the maps fε:M → N as a ‘variation’ of the map f0 = f (0,−). The corresponding
‘infinitesimal variation’ of f is the map wf :M → TN defined as

wf (x) = ∂

∂ε

∣∣∣∣
ε=0

f (A.1)

in other words, it is wf (x) = f ′(0, x), where

f ′ = Tf ◦ E: R ×M → TN

is the ε-derivative of f—here E is the unit vector field on R interpreted as to be on R ×M .
Note that wf is a vector field along f0. (Interpretingf as a path in the infinite-dimensional

manifold of maps from M to N, wf is its tangent vector at ε = 0.) It is clear that if fε does not
depend on ε, then wf = 0 (the converse is obviously not true).

Given a number c, if we define g(ε, x) = f (cε, x) it is easily seen that wg = cwf , and in
particular the infinitesimal variation of f (−ε, x) is −wf .

Now let us consider another variation g: R × N → P , and construct the compositions
gε ◦ fε; they define a variation g • f : R ×M → P :

(g • f )(ε, x) = g(ε, f (ε, x)). (A.2)

A direct computation in coordinates shows that

wg•f = wg ◦ f0 + Tg0 ◦ wf . (A.3)

Let us show these objects in a diagram:

M �f0

�
�

�
�
��

wf

N

TN

�
�g0

�
�

�
�
��

wg

�Tg0

P

TP

�

This result is immediately extended to the composition of three (or more) variations.
Another immediate consequence is the following one. Suppose that the fε:M → N are

diffeomorphisms, and set gε = f −1
ε . Then we have

wg = −Tg0 ◦ wf ◦ g0.

Finally, in a similar way one can prove that, if hε = (fε, f
′
ε ) then wh = (wf ,wf ′), with

the usual identification T(N × N ′) = TN × TN ′.

A.2. Transformation of maps

Consider variations fε:M → M ′ and gε:N → N ′, and a map h′:M ′ → N ′. If the gε are
diffeomorphisms, we can construct a family of maps hε:M → N as

hε = g−1
ε ◦ h′ ◦ fε

for which one can easily compute wh.
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In the important particular case where M = M ′, N = N ′, and f and g are variations of
the identity, obviously one has that h0 = h′ and

wh = −wg ◦ h0 + Th0 ◦ wf . (A.4)

Now let us take fibre bundles π :M → B and ρ:N → C. Suppose that the couple
gε:M → N and fε:B → C is a variation of a bundle morphism (g0, f0). If (gε, fε) are
bundle morphisms (i.e. ρ ◦ gε = fε ◦ π) then

Tρ ◦ wg = wf ◦ π. (A.5)

One can consider more particularly the case where g and f are variations of the identity, and
ask for instance whether a section σ :B → M is transformed into sections, or is left invariant,
etc.

A.3. Variations defined in terms of flows

Note that, with slight complications, the preceding definitions and results could be applied to
variations f defined only on an open subsetD ⊂ R ×M containing {0} ×M . This remark is
especially relevant for what follows.

Let us consider a vector field X on M, and denote its flow by FX, so that the integral curve
with initial condition x is ε �→ FεX(x). Let us assume for simplicity that X is complete, that is,
the domain of FX is R ×M; otherwise we would apply the preceding remark. It is clear from
the definition of the flow that

F′
X = X ◦ FX F0

X = Id wFX = X. (A.6)

Note that applying (A.6) one can compute the ε-derivative of the expression Fε(F−ε(x)) = x

and obtain

TxFεX ·X(x) = X
(
FεX(x)

)
(A.7)

which indeed tells that X is invariant under its flow.
Now let us consider a map h0:M → N , and vector fields X on M and Y on N. We can use

their flows to transform h0 as

hε(x) = h(ε, x) = F−ε
Y

(
h0

(
FεX(x)

))
. (A.8)

Applying (A.4) to this composition we obtain

wh = Th0 ◦X − Y ◦ h0. (A.9)

Note therefore that wh is zero iff the vector fields X and Y are h0-related.
In [KMS93] such infinitesimal variations are studied under the name of ‘generalized Lie

derivatives’, and for instance wh in (A.9) is denoted by L̃(X,Y)h0.
Let us show all these objects in a diagram:

M

M

N

N�hε

�

FεX

�h0

�
F−ε
Y

M

TM

�

X

�h0

�
�

�
�
��

wh

�Th0

N

TN

�

Y

Proposition 12. With the previous notations, h0 is invariant under the action of the couple of
flows iff wh = 0.
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Proof. The direct implication is a trivial consequence of the definition of wh. For the converse,
to show that h(ε, x) = h(0, x) we will prove that the ε-derivative of h, h′(ε, x), vanishes at
any ε (not only at ε = 0). This will be a consequence of the following equation:

h′(ε, x) = Th0(FεX(x))F
−ε
Y · (Th0 ◦ X − Y ◦ h0)(FεX(x)). (A.10)

To prove it, let us introduce some notation. First, we write F and G the flows of X and Y.
The tangent map of F applied to a couple of vectors ((ε, τ ), ux) ∈ TεR × TxM

∼=
T(ε,x)(R ×M) can be written as

TF((ε, τ ), ux) = F ′(ε, x)τ + TxF ε · ux. (A.11)

Changing some terms in (A.7), we also have

Y (y) = TGε(y)G
−ε · Y (Gε(y)). (A.12)

Now let us proceed to compute h′ = Th ◦ E. Let us write h = Ḡ ◦ h̄0 ◦ F̄ , where
F̄ (ε, x) = (ε, F (ε, x)), h̄0(ε, x) = (ε, h0(x)), and Ḡ(ε, x) = G(−ε, x). The chain rule
applied to these maps, as well as (A.11) and (A.6), yields

h′(ε, x) = −Y (G−ε(h0(F
ε(x)))) + Th0(F ε(x))G

−ε · TFε(x)h0 ·X(F ε(x)).
Application of (A.12) converts this equation into

h′(ε, x) = −Th0(F ε(x))G
−ε · Y (h0(F

ε(x))) + Th0(F ε(x))G
−ε · TFε(x)h0 ·X(F ε(x)).

= Th0(F
ε(x))G

−ε · (TFε(x)h0 ·X(F ε(x))− (Y ◦ h0)(F
ε(x))

)
= TG−ε ◦ (Th0 ◦ X − Y ◦ h0) (F

ε(x))

= (TG−ε ◦ wh)(F
ε(x))

which is (A.10). �

A.4. Infinitesimal vector bundle automorphisms

Let π :E → M be a fibre bundle. An infinitesimal automorphism is a couple of vector fields
(X, Y ) on M and E such that their flows (F ε,Gε) are fibre bundle isomorphisms.

Proposition 13. With the preceding notation, (X, Y ) is an infinitesimal automorphism iff Y is
projectable to X.

Proof. The condition of being morphism is π ◦Gε = Fε ◦ π , that is to say, π = F−ε ◦ π ◦Gε.

According to proposition 12, the right-hand side is ε-invariant iff Tπ ◦ Y = X ◦ π , which is
the condition of projectability. �

Note that under these conditions the vector field X is determined by Y, so we can as well
say that Y is an infinitesimal automorphism of the fibre bundle.

From now on let us suppose that π :E → M is a vector bundle. A couple of vector
fields (X, Y ) is an infinitesimal vector bundle automorphism if their flows (F ε,Gε) are vector
bundle isomorphisms. Of course Y is projectable to X. Y is said to be a linear vector field if
(X, Y ) is a morphism between the vector bundles π :E → M and Tπ : TE → TM:

M

E

TM

TE�Y

�
π

�X
�
Tπ
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Proposition 14. Let Y be a π-projectable vector field on E. Then Y is an infinitesimal vector
bundle automorphism iff Y is a linear vector field.

Proof. First remember that a smooth function defined on a vector space is homogeneous of
degree one iff it is linear.

So, denoting bymλ:E → E the multiplication by λ, the fact thatGε is linear is equivalent
to Gε ◦ mλ = mλ ◦ Gε for each λ. This can be expressed also as mλ = G−ε ◦ mλ ◦ Gε, and
applying proposition 12 again, this holds for each ε iff Tmλ ◦ Y = Y ◦ mλ. Written in other
terms, we have λ · Y (u) = Y (λu), where the first product is meant to be with respect to the
vector bundle structure Tπ : TE → TM . So on each fibre Yx :Ex → TX(x)E is a homogeneous
smooth map, and therefore linear. �

A different proof of this result, using coordinates, can be found in [KMS93]. It is also
interesting to recall that a projectable vector field Y is linear iff it is invariant under the action
of the Liouville vector field, [�E, Y ] = 0.
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